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This paper is concerned with the two-dimensional flow in a free waterfall, falling 
under the influence of gravity, the fluid being considered to be incompressible 
and inviscid. A parameter E, such that 2/s is the Froude number based on 
conditions far upstream, is defined and considered to be small. A flowline 
co-ordinate system is used to overcome the difficulty that the boundary geometry 
is not known in advance. An asymptotic expansion based on e is constructed 
as an approximation valid upstream and near the edge, but singular far down- 
stream. Another asymptotic expansion, based upon the thinness of the fall, 
is constructed as an approximation valid far downstream, but failing to satisfy 
the conditions upstream. The two expansions are then matched to give a solution 
covering the whole flow field. The shapes of the free streamlines are shown for a 
number of values of E for which the solutions are seemingly valid. 

1. Introduction 
An inviscid, incompressible fluid flows over a horizontal bed until it  falls over 

an edge under the influence of gravity. The flow is considered to be plane and 
steady. Far upstream the fluid is of depth h and has a uniform horizontal velocity 
U,, and gravity is acting vertically downwards (see figure 1). The problem is one 
of finding the velocity potential 0 and the stream function Y as functions of 
position. Both 0 and" must satisfy the Laplace equation subject to certain non- 
linear boundary conditions, namely zero pressure on the free streamlines and 
zero normal velocity on the bed. The basic non-dimensional parameter appearing 
in the problem is E = 2gh/U;, and this is assumed to be small in most of this 
paper. 

This problem involves a singular perturbation, the singularity occurring far 
downstream. As such, it lends itself to the technique of 'inner and outer expan- 
sions'. Kaplun & Lagerstrom (1957) and Erdblyi (1961) give a general account of 
this technique and also cite further references. In  the present paper an expansion, 
which is derived to satisfy the conditions in that part of the flow which is not 
far downstream, will be known as the inner expansion, and the region in which 
it is valid, as the inner region. Similarly, the outer expansion satisfies the con- 
ditions far downstream, and is valid in the outer region. 

The inner expansion is constructed by a perturbation scheme, in which all 
lengths are referred to h and all velocities to U,; this scheme may be regarded as a 
perturbation for weak gravity. The first approximation is therefore a uniform 
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horizontal stream. In the outer region, all lengths are referred to Q/2g and 
velocities again to U,, and so in this region the perturbation may be regarded as 
one for small width of the fall. Here the first approximation, being hydraulic, 
is of the well-known parabolic form. 

It is to be expected that the inner and outer regions overlap to some extent. 
By matching the inner and outer expansions in the overlap region, the unknown 
constants in the outer expansion are found, and the combined solutions then 
cover the whole flow field. 

Southwell & Vaisey (1946) found a result for the case e = 2 by relaxation 
techniques, and their solution has been used for comparison purposes in figure 5. 
Keller & Weitz (1957) also found a solution in the outer region, though by an 
approach different from the one given in this paper. This solution was found to 
agree with ours to the first approximation. 

FIGURE 1. Notation. 

2. Formulation 
We denote the fluid velocity by Q = V@, and consider a co-ordinate system 

2 = X + i Y ,  in which the bed is described as Y = - h; X < 0. Gravity is acting 
in the direction of Y decreasing. The problem is to find the complex potential 
P = @ + iY satisfying (aa/aXa + a2/aY2) F = 0, subject to: (i) zero pressure on the 
free streamlines, (ii) zero normal velocity on the bed. The free streamlines are 
unknown in terms of X and Y ,  but are known in terms of Y. This suggests invert- 
ing the problem to one of finding 2 as a function of F ,  that is, of finding 2 satisfy- 
ing (P/aB2 + a2/8Y2) Z = 0, subject to the same boundary conditions. 

To find the boundary conditions explicitly, we make use of Bernoulli's equa- 
tion : PIp + &Q2 + g Y = constant = -$ U;, 
where the density p is constant throughout the fluid, and the constant on the 
right has been evaluated from the conditions far upstream on the upper free 
streamline. 

We define non-dimensional variables by 

p = P/pUi ;  q = IQI/Uo; x = Z/h;  f = F/U,h; 

and Bernoulli's equation becomes 

2p+q2+q/ = 1. 
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Therefore the boundary conditions are 

(2.2) 

(i) q2 = 1 -ey on $ = 0, all q 5 ;  

(ii) q2 = 1 --ey on @ = - I ,  $ 3 0 ;  

$=-I, $ G O .  (iii) Im 2-l=0 on 
(df) 

If we consider the problem to be in the complex f-plane, then the field equations 
are satisfied by any complex function z(f). The problem is then, to find such a 
function x(f) which satisfies (2.2). 

3. The inner expansion 
We pose that 

To find the z,(f) we substitute (3.1) into (2.2) and, comparing coefficients of E ,  

obtain a sequence of linear problems in each of the z,(f) in turn. 
zo(f) is simply the solution in the case when E = 0, and so zo(f) = f. 

A 

I 
FIGURE 2. The complex S-plaJIe, showing the boundary values of tho 

first-order problem. 

On substituting (3.1) into (2.2), and comparing first-order coefficients, we 
find that xl+ = +$ on the free streamlines, where the subscript q3 denotes differen- 
tiation with respect to $. We therefore seek w1 = u1 + iv, = x14 + iy14, subject to 

(3.2) 

(i) u1 = 0 on $ = 0, allq5; 

(ii) ul=-+ on $ = - 1 ,  $20; 
(iii) vl = 0 on @ = -1,  $ < 0. 
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To solve this mixed boundary-value problem, we map the infinite strip, 
0 2 $ > - 1, in the f-plane on to the upper right-hand quadrant of the s = s1 +is, 
plane by the mapping: s = J( 1 + e-"f). The boundary conditions then are as 
given by (3.3), and as shown in figure 2. 

(3.3) I (i) u1 = 0 on s2 = 0, s1 > 1; 
(ii) ul= - 4  on s2= 0, 0 G s1 < 1;  

(iii) vl = 0 on s1 = 0, s2 2 0. 

This problem is familiar, in that it is analogous to that of finding the complex 
potential of an inviscid flow, covering the entire plane, with a pair of vortices 
situated a t  (1 ,O)  and ( -  1, 0). The solution is well known: 

(:: i) i 
w#) = -log 2n __ (3.4) 

However, it will be more helpful to solve a more general mixed boundary-value 
problem, as this more general solution may be used in the higher-order problems. 

Consider a complex function w, = u, +iv,, analytic in s1 2 0, s2 > 0, with 
u, prescribed on the positive real axis. Following Woods's (1961) account, we 
assume that 

I (i) v, = 0 on s1 = 0, s2 2 0; 

(ii) w,(s) N O(s-1) as 1st t 00; 

(iii) w, (s) is integrable in the ordinary (Riemann) sense on any finite 
arc of the positive real axis. (Unlike Woods we do not allow w, 
to have singularities of the Cauchy type.) 

If we consider the problem to be in the whole of the upper half plane, with u, 
now also prescribed on the negative real axis, then the solution is well known, 

( 3 ~ ~ )  

To ensure that v, = 0 on the positive imaginary axis, we have that 

un((+) = un( - a), 

and using this (3.7) 

We return to the first-order problem. The boundary conditions satisfy (3.5), 
and so using this method we recover (3.4). 

By the restriction (3.5, (iii)) we have excluded terms in tu,(s) of the form 

i(L+L) s - 1  s + l  ' 

which may be added to any solution without violating the boundary conditions 
except at the singular point s = 1. This is because we accept only the weakest 
possible singularity for s + 1, a policy justified later by the matching procedure. 
Therefore the solution to the first-order problem is given by (3.4), which in terms 
of the original variables, becomes 
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When we come to the matching procedure, we will require an expression for 
zl(f) as f f 00; this is then from (3.8) 

(3.9) 
zl(f) - -af2-  i ~ log2) f+cons t .+O(e -~~) .  

We now turn our attention to the second-order coefficient, z2. On inserting 
(3.1) into (2 .2) ,  and comparing second-order terms, we have that 

xzq5 = 8(Yl+ 346 - Y?& 
on the free streamlines. We therefore seek w, = u, + iv, = x2+ + iy2+, subject to 

(i) u2 = +(yl-y$) on $ = 0, all$; 
(3.10) i (ii) u2 = +(yI-y$)+$ on $ = -1 ,  4 2 0; 

(iii) v2 = 0 on $ = - I ,  q 5 <  0. 

Mapping the f-plane onto the s-plane, we find that on s2 = 0, u2 has a finite dis- 
continuity, and singularities of the nature log21s, - 11 and log Is1- 1 I at s1 = 1, 
but has no singularities elsewhere. Hence u2 satisfies (3.5, (iii)). Also 

u2 = O(s-2) as Is1 tco, 

and so all the conditions in (3.5) are satisfied. Therefore, using (3.7), the solution 
is given by 

where G(v) = i(yl-y2,& on s = u, u real. The behaviour of G(u) near u = 1, is 
given by 

1 1 
4n2 2x2 

G(v) = - - log2 1 ~ -  11 +-log 2 log IQ- 1 I + # H(1-  a) + J(u) ,  

where H is the Heaviside unit function, and J(u) is regular at u = 1. To re- 
move this singularity from within the integral, we define the complex function 
Y(5)  = 4 1 ,  82) + iP(s1, 82) by 

8-1  1 
(s - 1) log (s - 1) 

1 8-1 i 
y(s) = -- 4m2log2 (a) +Glog (a) -4n2 

1 1 
(3.12) 

The function y(s) satisfies the conditions ( 3 4 ,  and G(u)-a(u,O) = Q(u), 
where Q(u) .and dQ(u)ldu are continuous in 0 < u < co. From (3.7) 

1 
4n2 

+- (s + 1)log (s+ 1) -z210g ( s+ i )  -K2. 

y(s) = fSm a(u,o)(-&+G)du. 1 

n o  

Subtracting (3.13) from (3.11) we have 

(3.13) 
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The behaviour of z,(f) asf f 00, is then 

(3.15) 

l i  1 1 i i  
2n2 877 77 

x g ( f )  - - h f 3 +  5(2 - log 2) f 2 -  ($log2 2 + - + - - -log 2 f +  const. + O(e-nf ) .  

x g  N A*(I5 + i 3 2 4  ( I 5 A  9- + O(&, 

It is worth noting here that on the lower streamline near the edge 

2 
21 N - $(I5 - i-- $ 8  + O((I5)), 

32/77 

and 

l Y  

1 2 3 4 
It o x ,  I I 1 

-1 

-1  

/ 

/ 

/ 

/+ -2  
FIUURE 3. Case of 6 = 0.1; ___ , inner solution; - - I -, outer solution. 
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FIGURE 4. Case of e = 0.5; - , inner solution, - - - -, outer solution. 

where A,, A ,  are real finite constants. In  both these expressions, the leading 
singular terms are of order 9%. This shows that the singularity in the first-order 
term does not give rise to a more singular term in the second-order expression. 
It would appear, then, that at the edge, x(f) has no worse a singuIarity than that 
contained in x , ( f ) .  
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The functions zl, z8, yl, yz, have been evaluated numerically for the upper and 
lower free streamlines in the range - 5 < $ < + 5, and the results have been used 
in the construction of the figures 3 and 4. The higher-order terms in (3.1) could 
be derived in a similar manner, but we terminate the inner expansion after the 
second-order term. 

4. The outer expansion 
Defining the complex velocity by qe-ie, we know that qe-ie = fn($ + i$; E), but 

we do not know the manner in which E enters this function for large values of 4. 
However, if we take UTfl2g as reference length, and U, as reference velocity, this 
makes the width of the fall of order B. That is, if $+ is the new non-dimensional 
stream function, then the flow is bounded by the streamlines $+ = 0, $+ = - e .  
This narrowness is useful so long as ap++ - O(l) ,  for then we may assume little 
change across the fall. We have from the boundary conditions on the free 
streamlines 

This indicates that ala$+ - O( 1) far downstream, and we therefore adopt U$/2g 
and U, as the reference length and velocity in this region. Then Z+ = z+(f+; E), 
where 

We define the outer limit to be 

E 4 0, with #+, $ fixed $+ > 0; applied to z+($+ + i ~ + ;  e ) ,  

whereas the inner limit was 

E 4 0, with q5, $ fixed, q5 < a; applied to z ( # + i $ ; e ) .  

It will be noted that E does not appear in the boundary conditions, but in the 
actual boundary $+ 5 0, $+ = - e .  

The expression z+ = z+(f+;e) suggests that we could expand Z+ in a power 
series of the form 

and with direct substitution of (4.2) into the boundary conditions; q2 = 1 - y+ 
on $+ = 0 and $+ = -8, we would obtain a sequence of non-linear, ordinary 
differential equations for zt($+, 0) and y:($+, 0) ,  which could be solved. 

However, we approach the problem from a different viewpoint. The following 
derivation is more satisfactory in that it is simpler, sheds more light on the physi- 
cal problem, and leads to a series valid not only under the outer limit previously 
defined, but also under two other limits. 

z+ = z$($++iis$) +sz,f($++ie+)+ ..., (4.2) 

First, we change to  a less cumbersome notation, writing 

z+ = 6 = g+ir; f+ = 7'  , $+=(T. 

We have then that log q - i0 = fn(7; E ) ,  and therefore, by the Cauchy-Riemann 
relations, 

(4.3) 

(4.4) 
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Also from the definitions of q5 and $, 

d< = q-l(cos 8 dcr - e sin 8 d$), 
dy = q-l(sin 8 dcr + E cos 6d$) .  

The boundary conditions are 

q 2 = I - y  on $ = O ,  + = - I .  (4.7) 
By considering momentum flux in the <-direction, it can be shown that 

(p/q+q) cost?d$ = const. = 1 + 1s = E ,  (4.8) 

where the flow conditions far upstream have been used to evaluate the constant 
on the right, and p is given by 

In terms of the variable $, the width of the fall is O(l), and derivatives with 
respect to 9 are O(s), and so we may take as a first approximation that q and 0 
are independent of @, and also that q2 $ p. Then from (4.8) we have 

(4.10) 

where the subscript ‘0’ denotes the value taken on $ = 0. Also from (4.7) and 

P = !?(l-s-a”. (4.9) 

qo - E sec 8,, 

(4.6), q$ = 1 -qo and 
@)o = qtlsin so, 
. . ”  

which, with (4.10) give 

$(q$ - E2)f  + 2E2(q9 - E2)* - CT - A(€), 

where A(€) is a constant of integration. 
We define A ( c ,  e) by 8, = -A;  then 

cr - A(€) N 2E3(tan h + 6 tan3 A). (4.11) 

We may now take A, rather than cr, to be the independent variable, and express 
all other quantities in terms of A, equation (4.11) providing the link with the 
original variable. In  this case we then have 

qo - E sec A, 
qo N -E2sec2A+1, 

to N A(€) + 2E2 tanh. 

(4.12) 
(4.13) 
(4.14) 

(4.14) and (4.13) clearly show the parabolic form of the fall, to the first approxima- 
tion. (4.14) was constructed by using (4.5). 

We express q, y, and 0 in the form of Taylor series about $ = 0,  viz. ; 

4 = qo+(!&do.$+.... 
Using (4.3)-(4.6), we can show that 

q N E sec A - (c$ C O S ~  h)/2E2, 

0 - - A - (€9 cos3 A sin A)/2E3, 
7 - - E2 sec2A + 1 + (c$ cos2 A)/E, 
5 r~ A(€) + 2E2 tan A + (e$ sin A COB A)/E. 

(4.15) 
(4.16) 
(4.17) 
(4.18) 
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To find a second approximation, we put qo = E sec h + ql, and neglect all 
terms of O(qq), so that r0 = - E2sec2h+ 1 - 2E sechq,. On substituting these 
values into (4.15) and (4.17), and then using the new values of (4.16) and (4.17) 

It is then easily shown that the full second-order approximations are 

in (4.8), we find that ~ 1 =  - (8 cos h)/4E2. 

q - E sec h - (e cos A )  14E2 - (E$ C O S ~  A)  1 2E2, (4.19) 
e - ~ - ( e ~ c o s 3 ~ s i n ~ )  1 2 ~ 3 ,  (4.20) 

7 N - E2 sec2h + 1 + €1 2E + (E$ cos'h)lE, (4.21) 

( N A(€) + 2E2 tan h + (€$sin A cos A) I E, (4.22) 

(4.23) and - - C O S ~ A / [ ~ E ~ ( ~ - E C O ~ ~ A ~ ~ E ~ ) ] ,  
so that a-R(e) N 2E3(tanA+4tan3h)-+(etanh). (4.24) 

The equations (4.19)-(4.22) have the appearance of asymptotic expansions 
under three different limits, namely 

ah 
da 

(i) 
(ii) 
(iii) 

E J. 0 with $, h fixed, and h > 0, 
E f oc, with +,A fixed, and h > 0, 
h f Q7r with E ,  $ fixed, and E 2 0. 

It should be noted that in the case of the limit (ii) E = 1 + &e N &, and so e/E Q E. 
However only in the limit (i) can the unknown constants, A(€) and A(€), be 
determined by matching. 

5. The matching procedure 
We consider the limiting process, E J. 0 for f = m(e) f,, with f, fixed, and 

1 < m(e) Q e-l, where the notation a(€) Q b(e) means a/b J. 0, as eJ. 0; 
a, b 2 0. f, is called an intermediate variable because; 

f = m(.)f, f 00, as E J. 0 with f, fixed, 
and T = m ( e )  f, J. 0, as e J. 0 with fm fixed. 
We now assume that the set of intermediate order functions m(e) defines an 
overlap region in which the inner expansion, the outer expansion and the 
exact solution are all asymptotically equal. Therefore we express the inner 
expansion, in terms of the intermediate variables, for f f co, and the outer 
expansion, also in terms of the intermediate variable, for T J. 0, and compare 
the two resulting expansions. 

We have, from 0 3, the result that for f + cx) 

1 i 
m2(s)fA--log 2m(e) f,+const +0(e2m3(e)). (5.1) 

7r 

If in (4.21) and (4.22), we express h in a double series in E and a, and making use 
of (4.23), we can put the outer expansion into the form, 

x = ~ - ~ [ ( A , , + 2 t a n c ~ + i t a n 2 c ~ ) + e m ( ~ ) f , , ~ o s 2 ~ ~ ( 1  -itan2co) 
++e2m2(e)fi ( - ~ o s ~ ~ ~ t a n c , + ~ i ~ o s 4 c ~ ( 2 s i n 2 c ~ -  I))] +0(e2m3(e)) 
+ [(A, + Q tan co - + sin co cos co + 2a, cos2 co + i(+ sin2 co - 2a, sin co cos co))] 
+ em(€) f,[ (8 see2 co + + sin2 co - 4 cos2 c,, - 4a, cos co sin co) + i( 2 sin co cos c, 
- 2a, cos 2co)] Q cos4co + O ( E 2 r n 2 )  + O(E), (5.2) 
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where c, is the value of A for e = 0 and 
a, is a constant to be determined and is related to All where 

= 0, and A(€) = A,+eA, + ... . 

A(€) = A o + d l +  .... 
On comparing (5.1) and (5.2), we find that, from first-order terms 

A, + 2 tan c, = 0, (5.3) 

tan2c, = 0, (5.4) 

and we can thus deduce from these that 

C, = 0, 

We can also deduce, from the size of the terms we have neglected, that 

A, = 0. 

1 Q m(6) Q e-1, 

f = m(s)f,,; 1 Q m(6) -g e-1, 0 < fnl < co. 

and so for matching to one term, the overlap region is defined by 

On putting c, and A. to zero in (5.2), we have 

% 
z = m(e)f, - 4 6m2(6)fA + (A, + 2 ~ 1 )  

- ia,em(e)f,,+ O(e2m3(a)) + O(szm2(e)) + O(e). (5.5) 

On comparing (5.5) and (5.1), the fkst two terms in each are the same, and from 
the other terms we have that 

A,+ 2a, = 0, ( 5 4  

a, = - log 2, (5.7) 

and so A, = - - log 2. (5.8) 

1 << m(.) Q €4. 

f = m(e)f,,, 1 << m(s) -g 6-4, 0 < f, < co. 

1 
77 

2 
77 

Also from the neglected terms, we can deduce that 

Therefore, for matching to two terms, the overlap region is defined by 

From (5.7) and (4.24), we find that 

A, = 0, A, = -2log2. 
77 

Therefore by matching we have found that 

2 

2 

A(€) = - - l o g 2 . ~ : + 0 ( 6 ~ ) ,  
77 

and A(€) = - -- log 2.6 + O(6'). 
77 

Also, the fact that the two expansions do have the same asymptotic form in the 
overlap region, provides a strong indication that our assumptions, aa to the form 
the expansions should take, were correct. 
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The determination of the constants in the outer solution provides a complete 
solution covering the whole flow field. Figures 3 and 4 show this solution, 
for the upper and lower streamlines, in the cases when E = 0.1 and E = 0.5. 
In  the latter case, the inner solution displays a tendency towards a reversal 

-1 
J 

t’ 
O x f  2 3 4 

FIUURE 5. Case of E = 2.0; comparison between our outer solution and the solution of 
Southwell & Vaisey (1946). - - - -, Outer solution; - , Southwell & Vaisey solution. 

in the direction of the flow, a tendency which becomes more severe with increasing 
E .  In  figure 5, the outer solution is shown to be in close agreement with the 
Southwell & Vaisey solution for E = 2, though, for this case, the inner solution 
is such that it does not coincide with the outer solution before reversal occurs. 
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